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1. Introduction

Computer simulation of beam optics is one of the tools for understanding and upgrading
performances of existing machines. A correct simulation model of the machine lattice requires a
precise knowledge of physical parameters for every lattice element. Effective parameters of the
physical elements can be reconstructed from beam measurements, while they can be related with
measurement data either directly with an orbit response matrix [1] or by means of intermediate
parameters, e.g. lattice optical functions [2]. Presently, both algorithms are implemented for the
correction of linear coupling in TEVATRON |2, 3].

In this note, the second approach for two-dimensional (2D) linearly coupled betatron motion is
implied, while the turn-by-turn (TBT) data are considered to be related with normal modes of
betatron oscillations [2]. Correct values of physical parameters can be found by a matching
procedure of a simulation code when physical parameters are varied in order to match to constraints
given by values of lattice optical functions.

The 2D linear coupled motion can be decoupled into normal modes either using the Edward-Teng
method [4] or using the approach developed by Ripken [5]. Simple relations between the Edwards-
Teng and the Ripken lattice functions are known [6]. The Ripken parameterization explicitly deals
with normal modes and is most suitable for the TBT data analysis [7]. In this note, the lattice

eigenvectors given by the Ripken parameters are used as constraints in the matching procedure.
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The MAD code is well established tool for beam dynamics simulations [8]. We are going to adjust
its successor MAD-X [9] to simulate the beam optics in TEVATRON rings. The MAD-X (version
3.03.13) is able to calculate both Edwards-Teng and Ripken parameters using the commands
“TWISS” and “PTC_TWISS”, respectively. In former case, the coupled matrix and the TWISS
parameters are derived from the 4-by-4 one-turn linear matrix [10]. In the latter case, the 6-by-6
eigenvector matrix is extracted from the normal forms derived from the non-linear map by PTC-
library [11]. The “TWISS” command deals with simple 4-by-4 matrix calculations and run faster
than the “PTC_TWISS” which dealt with non-linear maps and normal forms and intended for more
general 3D calculations.

A matching procedure with a simulation code for large rings like TEVATRON may use huge
numbers of both the varying parameters and the targeting constrains. Therefore, it requires fast and
simple calculations of a penalty function, which is in fact an algebraic combination of all
constraints. In this note, we have shown that the Ripken parameters for 2D case can be calculated
using only the “TWISS” command utilizing simple expressions in the MAD-X input file. The results
of the “TWISS” command have been tested with a simple ring lattice and verified using results
provided by the “PTC_TWISS” command. The regular MAD-X matching procedure with macros
existing in “MAD-X-3.03.13” [12] is used in our linear case for both commands. Note, that this
matching is primarily intended for the nonlinear parameters. In our tests, matching with the
“TWISS” command has run up to ten times faster than one with the “PTC_TWISS” command.

We may conclude that similar simple formulae can be implemented in the TWISS-module of MAD-
X for 2D calculations of the Ripken parameters. Such update of MAD-X may be desirable in order
to reduce computation time of 2D matching procedures for large rings. An alternative way is to

implement the new PTC matching [13] speeding up the computations by one-two orders.
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Calculations and Matching for the Eigenvectors with PTC_TWISS

The “PTC_TWISS” command of MAD-X [12] calculates the Ripken parameters and the
eigenvectors for the 3D case using the PTC_TWISS module based on the PTC code. This module
uses the “Normal-Form” technique of PTC which is a universal tool for treatments of non-linear
maps. The module performs a normal form on a given map. Normal form contains all sorts of
information, including the lattice functions. The 6-by-6 eigenvector matrix is also extracted from the
normal forms.

PTC_TWISS command can list both the Ripken parameters and components of eigenvectors.
According to the Ripken notation [5], the point in the 4-D phase space Z(s)= (x,x",y, ') at

position s is expressed as:

(S): \/‘9_1[21(5)005% —Ez(s)sin¢,]+\/g_n[23(s)cos¢n _54(S)Sin¢n]a (H

where &, and ¢, are constants for the I-st and II-nd eigen-modes, the column-vector Z,

Ny

V.

2,j

(j=1,...,4) has four components z, = (V Vi Vi, )T , which are related to the Ripken

Lj

parameters with the following matrix equation:

i Vo Vs Vi By cos®, Bysin® B cos® Lo sin®

‘V ‘ _ Vo Vo Vs Wy _ \/}/—ﬂCOS D, \/7/_xlsm D, Vi COSD Vi SIN® @)
v Vi Vo Vi Wy Bycos®, B, sin® /B, cosD B, sinD
Vi Vi Vi Vi 7, cos®@ 7, Sin ) i 7 €OS @ " ¥, Sin D o

After substitution eqn. (2) into eqn. (1), one gets the particle coordinates expressed with the Ripken

parameters
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J& By (cosg cosD , —sing sin® | )+./e, L., (cos ¢, cos® , —sing, sin® )

x )

x' EY a (cos ¢ cos® , —sing sin®d )+ EnY (cos ¢, cos®D , +sing,sin®d ) 3)
y| &p, \cosg cos® ; —sing sin® )+ EuBu (cos $, cos® ,; —sing, sin d)yn)
Y )

EY (cos @, cos Cf)yI —sin ¢, sin® )t A ET (cos @, cos CT)yH +sin g, sin &)yn )

The “PTC_TWISS” commands tracks the eigenvectors and prints components of the above matrix
V to the “Twiss” table, if they are selected with the “SELECT” command (flag=ptc_twiss).

Particular components V, ; can be selected with the names EIGN1j. The Ripken parameters can be

printed either directly by selecting corresponding names (e.g., betall,betal?,... ) or calculated

from the eigen-vector components within input script according to following formulae:

ﬁxI:Vlzl_i—Vé; ﬁ,‘rllzl/li—}_l/li; :Byl :V321+V322; ﬂyH:I/}Z}—i_I/Si;
cosd , = Vll/\/ Bas cos® = V13/\/ B Cosq)yl = V31/\/ﬂy1 5 COSCDyH = Vss/\/ﬂyn 5 “4)
sin® ;= Vlz/\/ By sin® = V14/\/ Buars sin® ; = V;Z/‘\,ﬂy[ ; sin® = V34/\/ﬂyn .

Note, that in the PTC_TWISS table, the beta-functions 8, B, B, , B, are denoted as betall,

beta?l, beta22, betal?2, respectively.

The matching procedure using the eigenvectors as the constraints can be done with the regular
MAD-X matching with USE_ MACRO keyword [12], which allows multiple the user-defined
expressions within a macro script and primarily intended for the nonlinear parameters. Here, it is
mainly used to verify our calculations with the “PTC_TWISS”. The example below shows the
general input structure for the matching procedure with the “PTC_TWISS” command.

1) The target values of constraints are assigned by following expressions:

V11 _TBT MO1 = 2.393862974; V12 TBT M02 = 0.4119203017;...
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2) the calculated eigen-vector components V,,, V;, at the elements labeled with M01, M02 are

extracted from “PTC_TWISS”-table and assigned to the variables vi1 MR MO1, V12 MR MO2.

V1l MR MO1l:=table(ptc twiss,M01l,eignll);

V12 MR MO2:=table(ptc twiss,M02,eignl2); ...

3) The following macro named as ptc_eigen contains a setup of PTC-environment, the
“SELECT”-ion of the used eigen-vector components V, |, ¥, and the call of the “PTC_TWISS”

command:

ptc_eigen: macro ={

ptc_create universe; ptc create layout,model=2,method=6,nst=10,exact;

select,flag=ptc twiss,clear;
select,flag=ptc twiss,column =name,eignll,eignl2,...;
ptc_twiss,closed orbit,icase=5;

ptc_end;};

4) The matching as defined above macro is initiated with the command match, use macro; and is

terminated with the command endmatch; . The matching block defines variable parameters (the

strengths k1 of two quadrupoles or1 and ¢op1), the name of used macro (ptc eigen), the
constrains imposed for the variables vi1 MR M01, vi2 MR M02, and the matching method

(jacobian):

match, use macro;
VARY, NAME =QF1->K1; VARY, NAME=QD1->K1;
use _macro, name =ptc_eigen;
constraint, expr=V11l MR M01=V11l TBT MO1;
constraint, expr=V12 MR M02=V12 TBT MO02;...
jacobian, CALLS =100, TOLERANCE=1.0E-10;

endmatch;
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Calculations and Matching for Eigenvectors with TWISS

The “TWISS” command of MAD-X [12] calculates the Edwards-Teng parameters using the TWISS
module, which is based on the corresponding subroutines copied from the MAD-8 code. The
“Physical Guide” of MAD-8 [10] outlines the algorithm for the computations of the Edwards-Teng
parameters. The method is similar to reference [10]. However, the FORTRAN code of the TWISS
module in MAD-X uses slightly modified formulae presented below.

In the 4-D phase space, the linear 4 x4 transfer matrix M partitioned into four 2 x 2 blocks (A,

B, C, D) can be transformed to a new block diagonal matrix U with two non-zero 2 x2 matrices

E* and E’, i.e.:

A B E* 0
M= and U= . (5)
C D 0 E
The “symplectic rotation” is performed using the 2 x2 coupling matrix R. The TWISS module

calculates the matrices R, E*, E” according to the following formulae:

1

R- _{% [Tr(A)-Tr(D)]+ sign[Tr(A)-Tr(D)],\/det(C +B)+ %[Tr(A)- Tr(D)f } lc+B], ®

E'=A-BR,E =D+RB (7).

The “TWISS” command calculates the components of the coupling matrix (R11, R12, R21, R22 in
the MAD-X notation) and the decoupled lattice functions for two-planes (RETX, ALFX, MUX, BETY,
ALFY, MUY ). At the initial point of the periodical lattice, the coupling matrix is calculated according
to the eq. (5). The lattice functions for every plane are calculated similar to the Courant-Snyder

parameters for uncoupled linear optics. For optimal numeric precision MAD uses the following

formulas [10] for tunes ,ufv},:
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cos(2mu’ )= (E;y + E32)/2

sin2md!, )= sign(Ey N - B ES - (B - E32) /4. (8)
yf,y =(27)" arctan[sin(Zﬂufq ) )/ cos(27wf,y )]

The initial lattice functions are given as

,Bf,y =EY /sin(27r,ufwy) and a;),y = (El’fiy - E )/[2 sin(27wf,y )] 9)

Then, the initial decoupled lattice functions are tracked throughout the ring elements.

The eigenvectors of the coupled system are expressed by

Vv, = (1+det(R))l/2( ZVJ and V, = (1 +det(R))1/2(RVV2J, (10)

- 1 2

ik 0
where V|, :( 7 L |-
- ax,yﬁx,y - IHx,y

The particle coordinates can be expressed by the following equation:

!
)IC b " 5 + " (1 1)
"sing +a’ cose, a,sing, +ajcosy,

X
x' a cosp —a’sing, a,cosp, —aysing,
=V, +V,| ,
¥ a
!
Y

_ - ! . " _
where a, =a +ia; and a, =a, +ia; are the complex constants, and ¢, , =27zu, .

After the substitution of eqn. (6)-(10) into eqn.(11), one gets the particle coordinates expressed with

the Edward-Teng parameters:

b [1 + de‘[(R)Tl/2 ﬁiﬂ (a; cos@, —a’sin gox)

x — [1 + det(R)]_l/2 B [ax (a' cosgp, —asing, ) +(a'sing, +a"cosp, )]

b 17| 0 et (R P R B + Rt 5 N cos, — a?sing, )+ R, sing, +a cosp )]
v} Al det R [- Ro8? + R, 577N cosg, —a sing, )+ R, (s, +a o5, )

+
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[1+det(R)] " [(+ R,B) + Ry, B, )(a; cos@, —a)sin (py)+ R,B" (a; sing, +a/ cos goy)
N [1 + det(R)Tl/2 [(— Rnﬁ}l/z - R“()zyﬁ;l/2 )(a’ cos@, —aj sin (py)— “,8’1/2 (a; sing, +aj cosg, )] (12)
[1 + det(R)]*l/zﬂl/2 (a cos@, —a, sin (/)V)
—[1+det(R)["* g

y

1/2[ ' _ " ]
ay(aycosgoy aysmgoy)+(ay smgoy+aycosgoy)

There is a simple relation between The Ripken and Edward-Teng expressions:

Bi=[1+det(R)]'B., @.=P,, a. =¢g’cosg, al=¢&*sing, a3)
ﬂyll [1+det(R)] ﬂy’ (pyZ(Dyll’ _5111/2C05¢11’ a _8111/25m¢11’

:an =[1+det(R)]7l[R ( 22ﬂ +2R12a )+R127y]

s (14)
15)1 = [1 + det(R)]il [Rn llﬂx - 2Rl2ax)+ R127/x]’

sin®,, = £,/*[1+det(R)] " [( 22ﬂl/2 +Rya, B, v )Sm ¢, —R,p, "2 cos P, ] (15)
cos® = B [1+det(R)[ [( R,B" +Rya, B )cos @, +R,p," sin (py],
Sin CI))’I 1/2 [1 + det R 1/2 [( llﬂ;/z + IQIZ(XXﬂx_l/2 )Sin ¢x - }QIZﬂx_l/2 COs ¢x] (16)
cosd = ﬂ 1/2 [1+det(R) 1/2[( R.B + Rlzaxﬂx‘l/z)cosgox +R,[." sin(px]

where y, =B ly (af’y + 1). The above equations can be derived by comparison of the equations (3)

and (12) for every coordinate. Using eqns. (15, 16), one may obtain relations between phases

®,=0,-0, and ®,;, =D, -0, (17

where O, = arccot|er, — B.(R,/R,)] and © , = arccotlﬂy (R,/R,)+ ayJ.

Using the above equations, we have tested the matching procedure using the Ripken parameters as
the constraints derived from Edward-Teng parameters calculated by the “TWISS” command.

The example below shows the general input structure for the matching procedure with the “TWISS”
command. The input structure includes all items used for the previously discussed “PTC_TWISS”
command and adds the item (numbered by “2”’) which defines the equations (13)-(16).

1) The target values of constraints are assigned by following expressions:
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V11 TBT MOl = 2.393862974; V12 TBT M02 = 0.4119203017;...

2) The equations (13)-(16) are coded in the following lines:

nonzero:=1.0; ! <====to avoid C-warning messages (“divisions by zero”)

ETAX :=nonzero; BETAY :(=nonzero; detR:=nonzero; RM12:=nonzero;

GAMAX := (ALFAX"2+1) /BETAX; GAMAY :=(ALFAY"2+1) /BETAY;

detR:=RM11*RM22-RM12*RM21; den detR:=1.0/(1+detR);

betaXl ET:=den detR*BETAX; ! << X1 >>>>>
PhiX1l ET:=2*Pi*MU X; cos PhiXl ET:=cos(PhiX1l ET); sin PhiX1l ET:=sin(PhiX1l ET);

V11l ET:=sqrt(betaXl ET)*cos PhiXl ET; V12 ET:=sqrt(betaXl ET)*sin PhiX1l ET;

beta¥Y2 ET:=den detR*BETAY; ! << Y2 >>>>>>

PhiY2 ET:=2*Pi*MU _Y; cos Phi¥2 ET:=cos(PhiY¥2 ET); sin PhiY2 ET:=sin(Phi¥Y2 ET);

V33 ET:=sqgrt(beta¥2 ET)*cos PhiY2 ET; V34 ET:=sqrt(beta¥2 ET)*sin PhiY¥2 ET;

betaX2 ET:=den_detR*(RM22*(RM22*BETAY +2.0*RM12* ALFAY)+ GAMAY *RM12"2); ! <= X2 =>
pyl ET:=RM22*sqrt (BETAY)+RM12*ALFAY/sqrt (BETAY); py2 ET:=RM12/sqrt (BETAY);

sin PhiX2 ET:=

(pyl ET*sin PhiY2 ET-py2 ET*cos PhiY2 ET)/sqgrt (betaX2 ET)*sqrt (den detR);

cos PhiX2 ET:=

(pyl ET*cos PhiY2 ET+py2 ET*sin PhiY2 ET)/sqgrt (betaX2 ET)*sqrt (den detR);

V13 ET:=sqgrt(betaX2 ET)*cos PhiX2 ET; V14 ET:=sqrt(betaX2 ET)*sin PhiX2 ET;

betaYl ET:=den detR*(RM11*(RM11*BETAX- 2.0*RM12* ALFAX)+ GAMAX *RM12"2) ; ! <=Y1 =>
pxl ET:=-RM11*sqrt (BETAX)+RM12*ALFAX/sqrt (BETAX); px2 ET:=RM12/sqrt (BETAX),
sin PhiYl ET:=

(px1 ET*sin PhiX1l ET-px2 ET*cos PhiXl ET) /sqrt (beta¥Yl ET)*sqrt (den_detR);
cos_PhiYl ET:=

(pxl ET*cos PhiXl ET+px2 ET*sin PhiX1l ET)/sqgrt (betaYl ET)*sqrt (den detR);

V31l ET:=sqgrt(betaYl ET)*cos PhiYl ET; V32 ET:=sqgrt (beta¥Yl ET)*sin PhiYl ET;

| <<<< ==== Get E-T parameters from the TWISS table ===>>>>

ALFAX:=table (twiss,ALFX); BETAX:=table(twiss,BETX); MU X:=table (twiss,MUX) ;
ALFAY := table (twiss,ALFY); BETAY:=table(twiss,BETY); MU Y:=table (twiss,MUY);
RM11l:=table(twiss, R11); RM12:=table(twiss, R12);

RM21:=table(twiss, R21); RM22:=table (twiss, R22);
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2) the calculated eigen-vector components V,,, V;, at the elements labeled with M01, M02 are

extracted from “TWISS”-table and assigned to the variables vi1 MR MO1, V12 MR MO2.

V1l ET MOl:=table(twiss,M01,VI11 ET);

V12 ET MO2:=table(twiss,M02,V12 ET); ...

3) The following macro named as TWISS eigen does not contain a setup of PTC-environment as
the ptc eigen-macro, and contains only the SELECTion of the Edwards-Teng parameters and
used eigen-vector components ¥, V,,, and the call of “TWISS” command:

TWISS eigen: macro ={

select,flag=twiss,clear;

select, flag=twiss,column = name,keyword, s, L , ANGLE,

BETX, ALFX, MUX, BETY, ALFY, MUY, R11, R12, R21, R22,

vll ET, V12 ET, V13 ET, V14 ET, V31 ET, V32 ET, V33 ET, V34 ET,
betaXl ET, betaX2 ET, betaY2 ET, betaYl ET,

cos_PhiXl ET, sin PhiX1l ET, cos_PhiX2 ET , sin PhiX2 ET,

cos PhiYl ET, sin PhiYl ET, cos PhiY2 ET , sin Phi¥2 ET;

twiss;};

4) The matching block is essentially the same as in the case of ptc_eigen -macro. It defines
variable parameters (the strengths k1 of two quadrupoles or1 and op1 ), the name of used macro
(TwIiss_eigen), the constrains imposed for the variables vi1 MR M01, vi2 MR M02, and the

matching method (jacobian):

match, use macro;
VARY, NAME =QF1->K1; VARY, NAME =QD1->K1;

use macro, name = TWISS_eigen;
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constraint, expr= V11 ET MOl = V11 TBT MO1;

constraint, expr= V12 ET M02 = V12 TBT MO02;...
JACOBIAN, CALLS=100, TOLERANCE=1.0E-10;

endmatch;

The Testing Results

The testing computations have been performed on PC with Pentium-1V (2 GHz) processor.

A simple four-bend ring lattice consisting of four FODO-cells has been explored. The calculations
of eigenvector components as well as the Ripken parameters with “TWISS” command provide
numerical results identical to one with the “PTC_TWISS”. This confirms that the formulae (13)-(16)
used for our calculations with the “TWISS” command are correct.

The matching has been tested with two variables and eight constraints given by the eigenvectors at
the different ring locations. Three methods of MAD-X matching module have been explored for

both “TWISS” and “PTC_TWISS” commands. The results are combined in the table below.

LMDIF SIMPLEX JACOBIAN
Number of calls 16 100 6
Minimum of the penalty function 6.54-107" 383-107° 5.97.107'
Time for “TWISS”, sec 8 12 8
Time for “PTC TWISS”,sec 27 140 31

The number of the penalty function calls and its minimal values are the same for both “TWISS” and
“PTC_TWISS” commands. We can see that the computation times with the “TWISS” command is
noticeably less then time with the “PTC_TWISS” command ranging from 3 to 10 times for different
methods. Note, that the above computation times are not net times spent by matching, they also
include the time spent by MAD-X for other commands of the input script. Therefore, the times for
the fast methods (“LMDIFF” and “JACOBIAN”) include a considerable part spent for other

irrelevant commands. Thus, the actual ratio between the computational times for the fast methods
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should be higher than a factor 3. However, this result is easily predictable since our 2D linear task is
not objective of the 3D “PTC_TWISS” and the MAD-X (version 3.03.13) nonlinear matching with
macros. Recent improvements for the PTC matching [13] have been implemented in the MAD-X
version 3.03.18. They can potentially improve the computation times by a factor 10 and practically
equalized times for the matching with “TWISS” and “PTC_TWISS”.

The described method can also take into account both calibration factors and tilts of BPMs. The

formulation of this approach is given in Appendix.
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Appendix
Connection between the measured Ripken parameters (derived from the TBT data) and eigenvectors

in MADX code is described. Constraints for MADX-matching are built.

Tilted BPM monitors AV
»
y \
”””” PN
. . BEMEN TN Y Xgpu
The beam-position monitors (BPM) are supposed to be N ‘
| o
tilted by some angle. The tilt angle of monitor is the angle < ‘ ;x
x between the monitor abscissa and X-axis of the S apu

accelerator. For small y <<1, a beam position given by x,
v in the “global” accelerator coordinate system is expressed by Xgp», Vgpy 10 the (local) BPM’s
coordinate system by the following formulae.

{ Xppy = X COS ¥ + ysin y <<l { Xppy = X+ 2V (A-1)

Yppy = —XSIn ¥ + ycos y yBPM=_Zx+y.

Let’s ryppy and 7,5, are the calibration factor taking into consideration electronics errors for the
horizontal (H) and vertical (V) BPMs, respectively. Then, the coordinates reported by horizontal and

rep

: —_— 3 .
vertical BPMs are Xjhoy = Xppnt/Timen @04 Vomen = Veew/Fumen » TESPECtively.
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The measurements give the relative value of calibration factor oz, = (xHBPM Xppm )/ Xpgpy - 1he
relation between absolute and relative calibration factors is gy = 1/%spy — 1- Therefore, the

absolute calibration factor is expressed by

TappM = 1/ (l + Oluppm ) (A-2)

The beam coordinates in the Ripken notation are

\/fe_l(\/ﬂ_xlcoscl)xI cos ¢ —\/ﬂ_xlsincl)xI sin¢,)+

(XJ _ /&y (\/ B cos®  cosdy — /B, sin®  sin ¢n) (A-3)
% \/5_1(, | B, cos® ,cosd — /B, sin® sin¢l)+
/&y (\/ By cos®  cosdy — .\ f,y; sin® ; sin ¢H)
Let’s use the notations for the 4-by-4 eigenvector-matrix
Vi=yBacos®, Vi, =p,snd, By cosD By sin® (A-4)
Vi = ﬂyl cos® , V3, = ﬂyl Sinq)yl yII cos® ;, V3, :Byn Sinq)yn

Then, one may rewrite (3)

(x]_ \/5_1(ch05¢1_Vlzsin¢1)+\/‘9—n(Vlscos¢n_Vl45in¢n) (A—5)
y B \/5_1(V31COS¢I_V325in¢1)+\/5_H(V33COS¢H_V34Sin¢n) .

1/2

The constants are a; = 811/ ? cosg, al =& s

sing,, a, =& cosgy, a’ =& sing, , while

1 2 1/2 :
gl a 24 a =a_and er = a, 2t a ,» and the coordinates are expressed as
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(xJ_(ax(Vucoscﬁl ~V,,sing,)+a,(V;, cos gy, —V,, sin%)} (A-6)

Yy a, (V31 cosg — V3, sin ¢1)+ a, (V33 cosg, — V3, sin ¢11)

Let’s excite beam coherent oscillations by a single kick. In the presence coupling, the excitation of
one of the two modes will excite an oscillation in the other mode too. The horizontal kick excites

oscillations with a_ # 0 and a, =0, and the vertical kick excites oscillations with a, =0 and

a,# 0:
x a,(V}, cosg —V,,sing,) x a,(V;;cos g, —V,,sing,)
= : and = . (A-7)
Vi \@ Vs cosg =V sing))| My @ Vscosdy —Vysing,) )
Horizontal BPMs

Two sets of data obtained by the horizontal BPM from the horizontal and vertical kicks:

rej _X
wp ) Xaem | . Xeem N N }0’| L Xt _
XHBPM > ; = = ;0 —— =
Tugpm H-kick Tuspm V—kick Tuspm |H—kick TtBpm V—kick
a, (Vi cos gy — Vi, singy )+ ya, (Vs cos gy — Vs, sin ¢1)|
b
Xiopn = "impy Hokick  _
e a, (Vn cos gy — ¥y, sin ¢II)+ xa, (V33 cos ¢y — V3, sin ¢II)|
TappMm |V—kick
o _lal0n v )eosd = (1, + 2V )sing ]| @[V + a¥s)cosg — (0 + Vs )sindy ]
HBPM 5
Tugpm H-kick TBpm |V—kick

The coupling is assumed to be weak, that is the eigenvectors V;, /V,, <<1 and V,,/V,, <<1 are small

values of the 1* order. With y << 1, one may neglect the small terms of the second order at H-kick:
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HBPM — ’

P _{ax[VnCOSﬂ_Vlein(éIH . ay[(Vn"'ZVss)COS%_(V14+7(V34)Sin¢11]| }

ThBpm H-kick TtiBpm |V—kick

Using different initial phases and defining the initial values during processing of TBT data [2,7], one

may extract components of eigenvectors, and obtain the set of 4 eigenvectors:

- s - s s

TaBpM TyBpM TyBpM TyBpM
H-kick V—kick

VllliBPM _ I/II;BPM _ VII;BPM _ Vis + Xupem Vs . VIZIBPM _ Via + XusemV 34 ) (A-8)

Vertical BPMs

Two sets of data obtained by the vertical BPM from the horizontal and vertical kicks:

V—kick }

- Zax(Vll cosg -V, Sin¢1)+ ax(V3l cosgy — Vs, sing, )|

rep Tvepm H-kick

y = . .
Ve —xa, (Vl3 cos @y —V,, sing ) +a, (V33 cos @y — Vs, singy, )|

JVBPM .
3

rep
XVBPM =

2
rep — )’BPM:*;]?‘T\; > :{_Z)C+y| . _Zx_-’-y

Yveem = ;

Fyepm | Hekick Fyepm

rVBPM | V—kick

b

e {ax[(l/;l - ZVU)COS¢I _(V32 - ZVlz)Sin¢1]| . ay[(V33 B ZV13)COS¢H _(V34 B ZVI4)Sin¢H]| }
VBPM —

"vepm H-kick TyBpm |V—kick

The coupling is assumed to be weak, that is the eigenvectors V,,/V,, <<1 and V,,/V,, <<1 are small

values of the 1* order. With y << 1, one may neglect the small terms of the second order at V-kick:

VBPM s

o {ax[(Vgl—an)cosa—(Vn—lez)sinml . @[V cosdy Vs, singy ] }

"yBem H-kick "yBpm |V—kick
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Using different initial phases and defining the initial values during processing of TBT data [A, G],

one may extract components of eigenvectors, and obtain the set of 4 eigenvectors:

A Vi = Xveenis . G Vis = Xveen 2 . AGLE Vs 5 VM = | (A-9)

- s s

1yBpPMm yBPM 1yBPM yBPM
H-kick V—kick

Building of Constraints
One may use two pairs of VARY parameters #,5p\; a0d Yyppn » a0d Aygpy and yyppy With the

following 8 constraints:

H-kick & HBPM V-kick & HBPM

HBPM HBPM _
{FHBPMI/U =V,. {VB Fisem = Vis + XisemVss

HBPM __ ? HBPM _ ’
Famem? 12 =V, s tasem = Vit XupenVa

H-kick & VBPM V-kick & VBPM

VBPM v VBPM _
{Vy Fuem = Va1 = Zveem¥li {VVBPMVn =V

VBPM _ VBPM _
Vi rmem = Vi — X2 veenPas - =V

(10)

A manual writing of MAD-X input-script realizing the above method is very tedious for a large
machine. For example, a plain input-script for TEVATRON contains 3700 lines (the file-size is
220kb). Additional input scripts realizing the described matching have a total size up to 1 Mb. The
code for creating MAD-X input-scripts has been written in FORTRAN and applied for TEVATRON
lattice at injection. It allows different combinations of constraints and variable parameters. The table

with the code switches managing types of constraints and example of input-file are given below.
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Table. ON-status of constraints and parameters vs the code switches.

HBPM_OFF | H Kick OFF | VBPM_OFF= | V_Kick OFF
Constraint or variable ON
=FALSE. =FALSE. .FALSE. =FALSE.
H-kick & HBPM
{FHBPMVIII_IBPM =V + + +
h HBPMVll;BPM =Vs
V-kick & HBPM
{I/II;BPMFHBPM =V + YupenV 33 + + +
Vll:BPMrHBPM =V + ZupenVs4
H-kick & VBPM
{VS\I/BPMVVBPM =V = XveemVii + + +
V3\2/BPM” veeM = Va2 — XveemP 12
V-kick & VBPM
{r VBPMV3\3/BPM =V + + +
K VBPMVSZBPM =V,
TsPM + +
yBpMm + +
P ATV + +
XvBPM + +

Example of input file for TEVATRON at injection is given below:

&NML UNIT for output ! Default value .TRUE. (to terminal)
Terminal output =.False.

&END

&NML MADX exe filename
MADX exe filename =
&END

'madxp _cwg95 20060913.exe’

&NML data directory
data dir prefix='../MADX TBT data/' !
&END

default directory for data
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&NML madx TBT debug
madx TBT debug = .TRUE.
SEND

&NML FILENAME MADX LINE

! File with only elements and beam lines without action conmmands
Filename madX Line = 'tev_inj 090806 vvk.madx'

&END

&NML FILENAME MADX LINE corrections ! File with corrections to the beam-line,
e.g.
! new shifted LINE started from BPMfl8 or
! new values for physical elements

Filename madX Line corrections = 'line shifted tev _inj 090806 vvk.madx'
&END
&NML MADX BEAM command !beam, particle=proton, energy:= 150; ! INJECTION

Particle MADX='proton'
Energy MADX GEV=150
&END

&NML MADX USE command ! USE, PERIOD=tevb0O shifted;
LineName USE MADX='tevb0 shifted' ! Name of beamline to USEd
&END

&NML_FILENAMES TBT data

Filename HBPM TBT DATA = "tbt data hbpm tev inj 090806.dat"
Filename VBPM TBT DATA = "tbt data vbpm tev inj 090806.dat"
&END

&NML Number of BPMs
Number HBPM TBT = 118, Number VBPM TBT= 118
&END

&NML HBPM 2 signatures
HBPM signature (1)="HBPM', HBPM signature(2)='HMONITOR'
&END

&NML VBPM 2 signatures
VBPM signature (1)='VBPM', VBPM signature(2)='VMONITOR'
&END

&NML Multipole Norm K1 2 signatures
Multipole Norm Kl signature(l)='mgsf',
Multipole Norm Kl signature(2)='MULTIPOLE'

&END

&NML Multipole Skew K1 2 signatures
Multipole Skew K1 signature(l)="mskw',
Multipole Skew K1 signature (2)='MULTIPOLE'

&END

&NML Constraints_ type

HBPM OFF=.FALSE., VBPM OFF=.TRUE. ! defaults HBPM OFF=.FALSE.,
VBPM OFF=.FALSE.
H kick OFF=.TRUE., V_kick OFF=.FALSE. ! H kick OFF=.FALSE.,

V_kick OFF=.TRUE.
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HBPM OFF VBPM OFF H kick OFF V_kick OFF

|

! 1. H-Kick

! 1.a H-optics : .FALSE. .TRUE. .FALSE. .TRUE.
! 1.b H-coupling: . TRUE. .FALSE. .FALSE. . TRUE.
! 1.c H-optics & coupling .FALSE. .FALSE. .FALSE. .TRUE.
|

! 2. V-Kick

! 2.a V-optics : . TRUE. .FALSE. . TRUE. .FALSE.
! 2.b V-coupling: .FALSE. .TRUE. .TRUE. .FALSE.
! 2.c V-optics & coupling .FALSE. .FALSE. .TRUE. .FALSE.
|

! 3 V- & H- kiks .FALSE. .FALSE. .FALSE. .FALSE.
&END

&NML Tune correctors
TYPE for delta K1 FOC='FOC', delta Kl FOC=0.0, & ! delta K1 FOC=0.0001
TYPE for delta K1 DEF='DEF', delta K1 DEF=0.0 ! delta K1 DEF=-0.0001
&END

&NML_VARY LIMITS r

! VARY, r, LOWER=r ini* (l-r rel)-r abs, UPPER=r ini* (l+r rel)+r abs

Use limits r=.TRUE., r ini=1, r abs=0.01, r rel=0.01 ! Calibration

factor
&END
&NML_VARY STEP r

USE_VARY STEP r=.TRUE., VARY STEP r=1.0E-04
&END

&NML_VARY LIMITS chi
Use limits chi=.TRUE., chi ini=0, chi abs=0.01, chi rel=0.01 ! Tilt angle
(rad)
&END
&NML VARY STEP chi
USE _VARY STEP chi=.TRUE., VARY STEP chi=1.0E-04
&END

&NML_VARY LIMITS K1

Use limits kl=.FALSE., kl ini=0, kl abs=0.01, kl rel=0.01 ! Multipole
strength K1 (quadrupole)
&END

&NML_VARY STEP K1
USE_K1 VARY STEP=.TRUE., K1 VARY STEP=1.0E-05
&END

&NML_VARY OFF

VARY K1 OFF=.FALSE., VARY r OFF=.TRUE., VARY chi OFF=.TRUE.
! defaults VARY K1 OFF=.FALSE., VARY r OFF=.TRUE., VARY chi OFF=.TRUE.
&END

&NML_TYPE Multipole K1 OFF !
! Max Number of TYPES=1000, the string Length <= 20
TYPE Multipole K1 OFF(1)='FOC'
TYPE Multipole K1 OFF (2)='DEF'
ITYPE Multipole K1 OFF (3)="'SKW'
&END
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